首页> 外文OA文献 >The Stability of Low-Rank Matrix Reconstruction: a Constrained Singular Value View
【2h】

The Stability of Low-Rank Matrix Reconstruction: a Constrained Singular Value View

机译:低秩矩阵重构的稳定性:一个约束奇异性   价值观

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The stability of low-rank matrix reconstruction with respect to noise isinvestigated in this paper. The $\ell_*$-constrained minimal singular value($\ell_*$-CMSV) of the measurement operator is shown to determine the recoveryperformance of nuclear norm minimization based algorithms. Compared with thestability results using the matrix restricted isometry constant, theperformance bounds established using $\ell_*$-CMSV are more concise, and theirderivations are less complex. Isotropic and subgaussian measurement operatorsare shown to have $\ell_*$-CMSVs bounded away from zero with high probability,as long as the number of measurements is relatively large. The $\ell_*$-CMSVfor correlated Gaussian operators are also analyzed and used to illustrate theadvantage of $\ell_*$-CMSV compared with the matrix restricted isometryconstant. We also provide a fixed point characterization of $\ell_*$-CMSV thatis potentially useful for its computation.
机译:研究了低秩矩阵重建在噪声方面的稳定性。示出了测量算子的受$ \ ell _ * $约束的最小奇异值($ \ ell _ * $-CMSV),以确定基于核规范最小化的算法的恢复性能。与使用矩阵受限等距常数的稳定性结果相比,使用$ \ ell _ * $-CMSV建立的性能范围更简洁,并且推导的过程也更简单。各向同性和亚高斯测量算子被证明具有$ \ ell _ * $-CMSVs远离零的边界,只要测量的数量相对较大。还分析了相关高斯算子的$ \ ell _ * $-CMSV并用于说明$ \ ell _ * $-CMSV与矩阵约束等距常数相比的优势。我们还提供了$ \ ell _ * $-CMSV的定点特性,这可能对其计算有用。

著录项

  • 作者

    Tang, Gongguo; Nehorai, Arye;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号